Lossless Scheme for Data Compression using Metasymbo|g

Angel F. Kuri Morales'", Oscar Herrera Alcantara®

(Mynstituto Tecnolégico Auténomo de México
Rio Hondo No. 1 México D.F.
akuri@itam.mx

@Centro de Investigacion en Computacion
Av. Juan de Dios Batiz S/N
Unidad Profesional "Adolfo Lopez Mateos" — Zacatenco
heoscar@sagitario.cic.ipn.mx

ABSTRACT

Huffman Coding provides a mechanism to minimize the
average length of codes assigned to symbols from an
information source. The average fength reaches the
minimum theoretical limit bounded by the entropy when
symbols have a probability distribution which Is an exact
integer power of %. Shannon showed that an n-th
extension of a code allows to reach the entropy as n tends
to infinite. However, in a finite message that is not
possible. In this work we present a scheme of lossless
data compression which allows us to find digrams,

trigrams,...,y -grams (for unbounded y) as Shannon
suggested in order to get maximum compression.

Keywords. Entropy, Extension of a code, Hufiman
Coding, Information Source.

1. INTRODUCTION

In his original work about Information Theory,
Shannon [1] defined the amount of information
assigned to a symbol generated by a source as:

1
I(s) =—og(p,) = log(—) (1)
Pj
where s, denotes the i-th symbol and p, denotes its
apparition probability.

The coding process of the symbols s; consists in
establishing a correspondence between each of
them (named symbols of the source alphabet) and a
sequence of symbols of a target alphabet. The
target alphabet is called a code alphabet and each
of the symbol sequences of the target alphabet that
corresponds with a symbol s, is called a codeword.
Coding is desired for different purposes such as
encryption, transmission and compression. This last
is the subject of this work.

How to achieve compression? As we see, we cap
assign a codeword of length Iy to each s, Fq
example, suppose we have five symbols 5=y’
5,='b', 53='¢’, 5¢='d", Ss='¢’ which are iid and that e
target alphabet is {0,1}. Table 1 shows thejr
probabilities as well as some arbitrary coding ang
their respective lengths. Considering that the target
alphabet is {0,1}) we can measure the length | in
bits.

TABLE 1.
FIVE SYMBOLS, ITS PROBABILITY AND SOME
ARBITRARY CODING

Column1 | Column2 Column3 | Columnd
5 Probability | Arbitrary | lc(bits)
Coding

s;=a py=1/3 sy 20 1

s,=b |p,=4/15 s, 2 10 2

s3=c¢ p1=1/5 sy 110 |3

s4 = p1=2”5 5191110 4

s5 =e py=1/15 sy 2> 1111 |4

The average length of a code is defined as

L hzﬂ, | | @
= 2P

K=1 Kk
where M is the number of different symbols in a

message and L represents the average number of
bits needed by each symbol s, in the encoding
process. In the example of table 1, M=5 and
L=226

The average information of the source (called its
entropy) is

M 1
H(x) = | — (3)
* k§1pk og(pk)_
H(x) = 2.14 0)

J. Diaz de Le6n, G. Gonzalez, J. Figueroa (Eds.): Avances en Clenclas de la Computaclén, pp. 176-180, 2003.

© IPN, México 2003.

Lossless Scheme for Data Compression using Metasymbols 177

which represents the theoretical limit of the average
length of all codes assigned to the associated
information source. As we can see H(x) =2.14 <
L =2.26. The proof of the general case may be
found in the Shannon's First Theorem where the
minimum average length Ly, that we can assign to
the symbols complies with

L in 2 H(X) (5)
Shannon states this resuit but does not discuss how
to assign the codes. Later, Huffman [2] established
a technique to promote compression by assigning
short codewords to symbols which appear more
often and large codewords to symbols which occurs
less frequently. Therefore, the average length is
minimized.

2. CODING AND COMPRESSION

In the previous example, the apparition probabilities
of table 1 can be obtained from a message such as
Msg1= “aaaaabbbbcccdde”. Each s corresponds
to a ASCII character (8 bits) so, the message has a
length of 120 bits. With the coding of table 1 we
can codify the message concatenating codewords
of each symbol and we get the coded message
CodedMsg1="000001010101011011011011101110
11111". The length of the Coded Message
CodedMsg1 is 35 bits

To decode Msg1 we need to remember that O
represents the ASCII character ‘a’, 10 represents
‘b’, 110 represents ‘c’, 1110 represents ‘d’ and
11111 represents 'e', i.e., besides the coded
message we need columns 1 and 3 of the table 1
{which is known as its “dictionary”). '

For simplicity we represent the ASCII value of a
character like ‘character. Now the fully coded
message formed with the dictionary and the coded
message looks like:
0'a’10'b'110'c’'1110'd'11111'e’00000101010101101
101101110111011111

The length of the fully coded message L is
calculated with the bits of the dictionary plus the bits
of the coded message

M =
L= kz1lk +8*M+L*L (6)
where:

L is the length of the message, i.e., the number of
symbols which conforms the message.

fv is the frequency of a symbol in the message
coded, in fact, p, is estimated by
fk M
p, =—andlL= } f 7
kL k=1 K &

Lna = 14 +40+15%2.2= 87 bits (8)
which is less than 120 bits, the number of bits of
Msg1 coded with ASCII values. Therefore, we can
think that compression is a consequence of a
coding chosen ad hoc [3).

2.1 Huffman Coding

In table 1 we choose an arbitrary coding which is
not optimal for compression because it is possible
to find at least another one which yields better
compression. That is the case of Huffman codes
which assigns the codewords efficiently.

in table 2 we show a Huffman Coding for the
symbols and probabilities of table 1.

TABLE 2. HUFFMAN CODING GIVEN A SET
OF PROBABILITIES

s | Probability | Huffman Coding | |, (bits)
sy |py=1/3 sy 211 2
Sz | p,=4/15 s; 2 10 2
sy | pi=1/5 s; =2 01 2
s |pi=2/15 |s, 2001 3
Ss p1=1“5 s, = 000 3

Using table 2 the coded message with Huffman
codes including the dictionary is

HufMsg1=11'a"10'b'01'c'001'd'000%¢'11111111111
0101010010101001001000

with a length of 85 bits, which is lower than the two
cases previously sludied. That is the advantage of
Huffman codes over other encoding schemes.

The average length of Huffman codes of table 2
areLphyff = 2.2 as we can appreciate

Lhuff = 2.2 > H(x) = 2.14 (9)

The best case of Huffman Coding happens when
symbols have a probability distribution with exact
integer power of % then L =H(x)and we get the
best possible encoding.

The worst case for Huffman Coding happens when
probabilities are not exact power of 2, because

178 A. Kuri and O Herrera

Aropy always is less than the average length. To
asinish the difference is recommendable to use a
h extension of the source alphabet as Shannon
howed in his First Theorem. The k-th extension of

source is formed by grouping the symbols of the .

priginal source in blocks of size k. When k=2 we
=3l them digrams, with k=3 trigrams and so on.

the second extension of a code the probabilities

are given by the product p,°p, considering that
hey are independent symbols and besides we need
code M* digrams (k=2).

#The average length for the 2™ extension
L 2.¢=2.86. To compare this length with the value
the first extension we need to divide L 2,4 by 2 t0

et Loz =1.43 bits. As long as k tends to infinity

ghe average length tends to the theoretical limit
wentropy). In this case .

A(x)=1.41 <L spa2 =143 < L=147 (10)
METASYMBOLS

Shannon suggested the use of words instead of
individual symbols. In Huffman Coding the k-th
extension of a coding allows to encode digrams,
trigrams, etc., but assuming that symbols are
independent of each other whereas in techniques
of dictionary[4] it is natural to use them but they
have the restriction of using adjacent symbols. In
this work we intend to identify groups of not

necessarily adjacent symbols (metasymbols) that, -

when optimally encoded offer a new approach to

data compression. ‘A metasymbol contains-

information about a set of symbols within a
message. For example, given a message msg =
“abcdefghijkim”, its decomposition in metasymbols
would be: M={abm, ef, d, ghijk, Ic}.

Take the message "xyazxybzxyi:zxydz’ of length
L=16 characters. A possible Huffman Coding is
shown in table 4.

TABLE 4.
HUFFMAN CODING FOR THE MESSAGE
"xyazxybzxyczxydz"

s; | Probability | Huffman Coding | |, (bits)

x | 4/16 00 - |2

y |4/16 01 2

z |4/16 10 2

a (116 1100 4

" The Huffman Coded Message is 00;x’01

b |1/16 | 1101

T4
c |1/16 1110 4
d [1/716 1111 4

2110151110¢1111'd 00 01 100 10 00 g2 1120

' 00
.10 00 01 1110 10 00 01 1111 10 whigh 10!

: whi
length of 118 bits. Nich has 3

‘With metasymbols we need to assign positions’
the symbols as if they were an array)

of cha
Then the message looks like g ¢ s,

."Xxyazxybzxycz xydz

0123456789101112131415 .
where it is possible to identify the pattem 'y

" . formed with non adjacent symbols at positions 0-1.

3, 4-5-7, 8-9-11 and 12-13-15. Another metasymbo|

" is ‘abed’ with symbols at positions 2-6-10-14 as we

show in figure 1. - :
xyazxybzxycz x yd z
01 345 789 111213 15

; 2 6 10 .14 :
Fig.1 Symbols and its positions in the message
“xyazxybzxyczxydz® '

With these two metasymbols® we create a
“metadictionary” which codification could be

1: xiy2z

2: adbdcAd

We read this as follows: Write ‘%' at position 0 then
advance 1 position and put 'y’ then advance 2
positions and put ‘'2’. - RN
Write ‘a’ then advance 4 positions and put ‘b’ then
advance 4 position and put ‘c’ then advance 4
positions and put 'd'. :

The coded message (without dictionary) can be
written as the sequence of indices of the dictionary
12111 : .

| The decoding process is as follows:

1. Reading the coded message from left to right and
using the dictionary we know that 1 represents
X1y2z then we decode it as:

Xy 2z

0123 '

Using the dictionary we know that 2 represents
adb4c4d then we decode it as

a b c d

‘012345678 9101112

Lossless Scheme for Data Comprassion using Metasymbols . 179 |

2. Read the ﬁrst 1 from the encoded message to
form the partially decoded message

x y z. 2

0123

" 3, Search for the leﬁmost empty position (LEP) in
the pamally decoded message, LEP—2 .)

4 Read the next value of 2 from the encoded

message - -and at positon LEP =2 we insert the .

symbol ‘a’ and in a kind of OR operatlon the other
symbols ‘', 'c"and ‘d' toget .

. x y b c £ d
012345678 9101‘112 13 14 15 _
Repeat steps 2 and 4 until we finish reading the

encoded message. Here we show how the decoded .

message is reconstructed

1.Read 1

‘2. LEP=4 - S s

3xyazxybz c d
012345678 91011 12 13 14 15

azxybzxy cz " d
2345678 9101112 13 14 15 -

41 Cornpres'sion with metasymbols

in the last example we encoded the message..'

concatenating the indices of the metadictionary.
However, it is possible to encode assigning
Huffman Codes to each metasymbol. Therefore, -if

we have just 2 metasymbols the Huffman Codes

are 0 and 1 and the Encoded Metadictionary looks
as shown in table 5.

TABLE 5. -
METADICTIONARY USING METASYMBOLS AND
' HUFFMAN CODING :

the metasymbol. In the case of the first row of table
5 we need to encode 1 and 2 and for the second
row we need to encode 4, 4 and 4. Hence, in the
worst case we need log,(4) bits and in general-

_ logz(Max(Offset)).

Then, to encode the message with metasymbo[s we

. need L,,,..,, bits, where

‘ | Lmetas = k§1lk +(8 + log,, (Max(Offset))) * k§1lmk

#L*L _ : (11)

In our example, Lnews= 88 bits which is less than the

116 _b'rts used in the classic Huffman Codification,
i.e. in some cases is possible to get better
compression ratios. - :

5. EXPERIMENTS

In table 6 we show some results we have gotten.
Column 3 indicates the number of bits used by First
Order Huffman Coding and Column 4 is the number.

of bits used with metasymbols.

TABLES 6.
RESU LT OF CODING WITH METASYMBOLS

Table 6. 1

. “GGGGGAEDCBAEDCBAEDC BGGGGGGGGG

Message

AEDCBAEDCBAEDCBGGGGGGGGGAEDCBAE |-
DCBAEDCBGGGG”

Metasymbols [No. Bits, - [No. Bits. | No. Bits
M=3 ASCII. (Huffman | (Metasy
) : Coding) .| mbols)
AG - 72 250 175
D1C1B :)
A1E
Table 6.2
Message

- AAAAABBBBBCCCCCDDDDDEEEEEFFFFF‘

Huffman Code What represents?
o ['X'1y'2'2’
1 L . lar4lbl4lcl4ldl

and the encoded message'is 01000. The number
of bits used to code the message including the
Metadictionary can be calculated in comparison with
-Ec. (6) for First Order Huffman Coding. Now M is
the number of different Metasymbols in the
Message to encode. Note that we need to include
the offset between each symbol which constitutes

Metasymbols | No. Bits No. Bits | No. Bits
M=2 . ASCIl. (Huffman [{Metasy
‘ _ . |Coding) | mbols)
CS5SD5ESF 240 142 115
A5B ' .

In Huffman encoding generally the symbols
correspond to bytes (8 bits) but we don’t know if this
is optimum, with metasymbols we can define that
the basic symbols are the bits 0 and 1. Forinstance,_

A. Kuri

when we have M=256 metasymbols using 8 bits
each one we get the special case of Huffman

coding for bytes.

Another special case of encoding with metasymbols
is the one where our metasymbols are formed for
just adjacent individual symbols. There we have a

scheme similar to the LZ[4] technique.

Consider now a bit stream [5) 0000000100000001
where we want to get compression using Huffman
Coding at one bit level. Then the symbols are 0 and
1 and their probabilities are 14 and 2 respectively.
The corresponding Huffman Codes are synthesized
in table 7.

TABLE 7
HUFFMAN CODING AT LEVEL OF BIT FORABIT
STREAM MESSAGE

Column1 [Column2 |[Column 3 |Column 4
Symbol | Probability | Codeword | Ix
S1=0 14 0 1
S1=1 2 1 1

As we have just 2 different symbols (M=2) then the
Huffman codes are 0 and 1 which are the same as
the source symbol and the encoded message is
0000000100000001 plus the dictionary, i.e. we have
negative compression.

In [6] we show that the selection of groups is not an
easy work because it is an NP problem so we
propose to use Ec. (11) as a metric for symbol
clustering where we use a Vasconcelos Genetic
Algorithm [7] to search the patterns in a message.

6. CONCLUSIONS

Shannon information theory gives fundaments
which allow us to build probabilistic compression
techniques but its most important restriction is that it
considers that symbols are independent. Then the
theoretical limit of compression applies to messages
with this characteristic. In practice the symbols of a
message usually are not independent. For example
in a Spanish text is clear that after a ‘'q’ itis highly
probable that a ‘u’ follows i.e, plunq)=pu)p(q).

Huffman Codes use a probabilistic model that is
restricted to use symbols with more that one bit
each (unless we use a k-th extension where k must
tend to infinity). This is impossible given a finite

length message. Besides, average
length tends to the theoretica% [:;lr:{fm N coge
bounded by the entropy of the source b:oh ‘th

considering the size of its associated diclionary'hout

Adaptive Dictionary Techniques Provi
mechanism to determine dynamically 1he°‘f'de
‘word” in @ message through a search ofslhe o
string matching in a dictionary but it is rest %
adjacent symbols. ficted

When compressing with metasymbols oyr goal
identify a set of groups of symbols withls
underlying assumptions and the groups
selected in order to get maximum compress;
including the size of the metadictionary, "

Given the above we want to select the groups
optimally in order to get maximum compression:
this effect we propose to use Ec.(11) as a ﬁtnéss
function of a Genetic Algorithm as reported in [g],

7. REFERENCES

{1] Shannon, C.E., A Mathematical Theory of Communicaton,
Bell Sys. Tech. J. 27 (1948), 379-423, 623-656.

[2] Huffman, D. A.. A method for the construction of minimum-
redundancy codes. Proc. Inst. Radio Eng. 40, 9 (.}, 1088-1104,
Sept 1952.

(3] Hamming, RW., Coding and Inforrnation Theory. Prentice-
Hall, 1980, p. 80-89.

[4] Ziv, J.. and Lempel, A., A Universal Algorithm for Sequential
Data Compression. IEEE Trans. on Inf. Theory IT-233 (May
1977), 337-343.

[5) Steven Prestwich, A Hybrid Local Search Afgqﬁthm for Low
Autocorrelation Binary = Sequences, Technical Rm
Department of Computer Science, National University of |

at Cork.

(6] Kur, A. Herrera O., Metrics for Symbol Clustering from
Pseudoergodic Information Source, |EEE Proceeding$
ENC2003. :

" : in
[7] Kuri, A., A Comprehensive Approach to Genebic gﬁgaﬂfh"'”
Optimization and Leaming, Editorial Politécnico, 1999.

